The scientific knowledge which is applied to practical ways in industry for the benefit of human beings is called as technology. The biological sciences have recently passed through more advanced technologies in different spheres of life and activities. One of those advanced technologies is the Bio- technology.
The applications of advances made in the techniques and instrumentations in research in biological sciences are called as Bio- technology. Some people define bio- technology as – the manipulation of organisms to make products that benefit human beings. Biotechnology dealing with crop-improvements is called as Agricultural Biotechnology.
The pioneering achievement in the field of Bio- technology was the production of greater genetic varieties of plants and animals through the techniques of Hybridization in 5000BC. It was through hybridization that present day High Yielding Varieties of plants and animals were evolved. This technique is being continuously used in improved forms in our programmes concerned with food production.
Application of bio- technology in Agriculture:
Tissue culture, cloning and hybridization are important bio- technologies that are being developed in agriculture today. Tissue culture is important for the propagation of high yielding varieties of plants for agriculture and floriculture. The technique of growing plant tissues on artificial nutrient medium under laboratory conditions, so as to produce new plants, is called as plant tissue culture. These may be the Meristem Culture, Embryo Culture and Anther Culture and so on.
Hybridization is the technique of combining properties of two plants or animals to produce one better hybrid plant or animal. Though this process frequently occurs in nature, the adoption of this technology has supported the agriculture to produce more food to feed growing population in many countries. Similarly, hybridization technology has supported animal husbandry to produce more milk and meat.
The application of bio- technology in agriculture can make it more sustainable. The introduction of bio-fertilizers in soil can improve it’s composition besides making it fertile in a natural way. Similarly, the introduction of bio-pesticides can control pests through natural ways without contaminating the natural environment. The development of disease resistant and pest resistant crop varieties through bio- technological methods has further supported the agriculture.
Scientists are continuously experimenting for the improvement of crop plants like potato, tomato, cabbage and other vegetables and fruits as well as other crop plants like sugarcane, wheat, maize etc. to obtain better yield. Some new crop varieties like Triticale (a man-made cereal) have also been developed to add nutrients in our food and increase food production.
In agricultural biotechnology, changes are made directly to the plant’s genome. Once the gene that determines a desirable trait is identified, it can be selected, extracted, and transferred directly into another plant genome. Plants that have genes from other organisms are referred to as transgenic. The presence of the desired gene, controlling the trait, can be tested for at any stage of growth, such as in small seedlings in a greenhouse tray. A breeder can thus quickly evaluate the plants that are produced and then select those that best express the desired trait. Producing new varieties of crops through genetic engineering takes about 10 years on average.
The applications of genetic engineering through recombinant DNA technology increased with time and the first small scale field trials of genetically engineered plant varieties were planted followed by the first commercial release of genetically engineered crops in 1992. Since that time, adoption of genetic engineered plants by farmers has increased annually. While the benefits of genetically engineered crop varieties have been widely recognized, there has been extensive opposition to this technology, from environmental perspectives, because of ethics considerations, and people concerned with corporate control of crop varieties.
Crops produced through genetic engineering are sometimes referred to as genetically modified organisms. The term genetic modification and so-called genetically modified organisms (GMOs) is frequently misused.
All types (organic, conventional) of agriculture modify the genes of plants so that they will have desirable traits. The difference is that traditional forms of breeding change the plant’s genetics indirectly by selecting plants with specific traits, while genetic engineering changes the traits by making changes directly to the DNA.
In traditional breeding, crosses are made in a relatively uncontrolled manner. The breeder chooses the parents to cross, but at the genetic level, the results are unpredictable. DNA from the parents recombines randomly. In contrast, genetic engineering permits highly targeted transfer of genes, quick and efficient tracking of genes in new varieties, and ultimately increased efficiency in developing new crop varieties with new and desirable traits.
Many different tools are available for increasing and improving agricultural production. These tools include methods to develop new varieties such as classical breeding and biotechnology. Traditional agricultural approaches are experiencing some resurgence today, with renewed interest in organic agriculture; an approach that does not embrace the use of genetically engineered crops. The role that genetic engineering stands to play in sustainable agricultural development is an interesting topic.